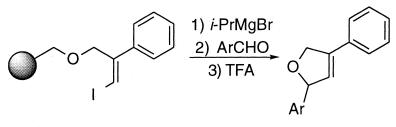
combinatoria CHEMISTRY

Report


Subscriber access provided by American Chemical Society

Synthesis of 2,4-Disubstituted 2,5-Dihydrofurans and 1-Substituted 1,3-Dihydroisobenzofurans via an Iodine–Magnesium Exchange Reaction

Mario RottInder, and Paul Knochel

J. Comb. Chem., 1999, 1 (3), 181-183• DOI: 10.1021/cc980030m • Publication Date (Web): 03 April 1999

Downloaded from http://pubs.acs.org on March 20, 2009

Ar = aromatic or heteroaromatic rest

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Synthesis of 2,4-Disubstituted 2,5-Dihydrofurans and 1-Substituted 1,3-Dihydroisobenzofurans via an Iodine–Magnesium Exchange Reaction

Mario Rottländer[†] and Paul Knochel*,^{†,‡}

Fachbereich Chemie der Philipps-Universität Marburg, Hans-Meerwein Strasse, D - 35032 Marburg, Germany, and Institut für Organische Chemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, D - 81377 München, Germany

Received October 31, 1998

While translating solution phase organic carbon-carbon coupling reactions into solid phase organic chemistry one often experiences a decrease in reactivity due to the heterogeneity of the reaction and therefore elongated reaction times and/or incomplete reactions. To overcome these problems the use of highly reactive organometallic intermediates could be helpful. Functional group tolerance and relative reactivity are crucial for the generation of a maximum of diversity in combinatorial chemistry. Organozincates have been generated on a resin leading to polyfunctional organometallics with moderate reactivity.¹ Grignard reagents represent a well-established class of organometallic reagents with high reactivity toward many electrophiles but they could not be prepared when functional groups such as esters, amides, or nitriles were present.² The halogen-magnesium exchange reaction constitutes one possible access to Grignard reagents.³ Lately, we have found reaction conditions which allow the preparation of highly functionalized aryl Grignard compounds employing a lowtemperature iodine-magnesium exchange reaction.⁴ Herein, we present general reaction conditions for the formation of resin-bound aryl- and alkenyl-magnesium compounds starting from resin-bound iodides and their reaction with aromatic aldehydes, as well as a cyclization-cleavage approach under mild conditions to yield 2,5-dihydrofurans and 1,3-dihydroisobenzofurans.

As starting material, trichloroacetimidate resin 1 was prepared from Wang resin⁵ using standard literature procedure.⁶ It was reacted in parallel synthesis with reagent chemset 2 (Figure 1, Scheme 1) to furnish resin-bound chemset **3** containing two (Z)-alkenyl iodides $(3\{1-2\})^7$ and an aryl iodide $(3{3} (Figure 2))$. Test cleavage of chemset 3 using TFA (10% in CH₂Cl₂) revealed a ca. 90% conversion of Wang resin and a purity of >95%, as determined by mass recovery and HPLC analysis of reisolated 2. Each compound $3\{1-3\}$ was then subjected to an iodine-magnesium exchange reaction by treatment with *i*-PrMgBr (ca. 10 equiv) in a solvent mixture of THF/NMP (40:1) at -40 °C. The exchange reaction was monitored by quenching of $4\{1\}$ with THF/H₂O/AcOH (80:15:5) and subsequent TFA cleavage as above. After 1.5 h reaction time no more alkenyl iodide could be detected by HPLC analysis. In THF without a cosolvent,⁴

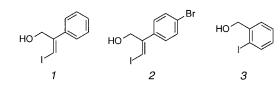


Figure 1. Reagents $2\{1-3\}$.

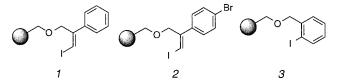
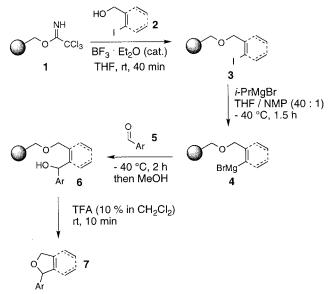



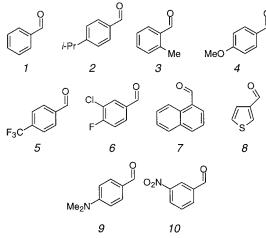
Figure 2. Structures of resin-bound iodides $3\{1-3\}$.

Scheme 1

however, quenching of $4\{1\}$ after 2 days at -40 °C still revealed >5% starting iodide $2\{1\}$, clearly demonstrating an acceleration of the iodine-magnesium exchange reaction by NMP.⁸ In the case of $3{2}$ no bromine-magnesium exchange product could be detected, showing the selectivity of the iodine-magnesium exchange reaction. The chemset 4 was then reacted in parallel synthesis with reagent chemset 5 (ca. 15 equiv, Scheme 1 and Figure 3) at -40 °C for 2 h, followed by quenching of the reaction mixture at low temperature with wet MeOH, affording resin-bound chemset 6. All members of chemset 6 were treated with TFA (10% in CH₂Cl₂, 10 min), affording soluble product chemset 7 (Scheme 1 and Table 1). Part of the scope of this reaction was demonstrated by using aromatic aldehydes bearing several functional groups with different electronic properties. Electron rich aromatic aldehydes $(5\{2-4\}, 5\{7-9\})$ were as well suited for this synthetic method as electron deficient aromatic aldehydes ($5{5-6}$), furnishing the substituted and functionalized 2,5-dihydrofurans $7\{1-2,2-9\}$ and 1,3dihydroisobenzofurans $7{3,2-9}$. Remarkably, even an aldehyde containing a nitro group $(5{10})$ was tolerated in this reaction, and the nitro-substituted 2,5-dihydrofurans $7\{1-2,10\}$ and 1,3-dihydroisobenzofuran $7\{3,10\}$ could be isolated in satisfactory to good yields and good purities.

[†] Fachbereich Chemie der Philipps-Universität Marburg.

[‡] Ludwig-Maximilians-Universität.


Table 1. 2,4-Disubstituted 2,5-Dihydrofurans $7\{1-2,1-10\}$ and 1-Substituted 1,3-Dihydroisobenzofurans $7\{3,1-10\}$ Derived by an Iodine-Magnesium Exchange Reaction on Resin-Bound Iodides 3 Followed by Subsequent Reaction with Aldehydes 5 and Cyclization-Cleavage Reaction

iodide 3	alde- hyde 5	product 7	purity (%) ^a (yield (%)) ^b	iodide 3	alde- hyde 5	product 7	purity (%) ^a (yield (%)) ^b
		o ∥ ^R				o/	
		K					
2(1)	F (1)		08 (80)			MeO	
3{1} 3{2}	5{1} 5{1}	7{1,1}: R=Ph 7{2,1}: R=p-BrPh	98 (89) 98 (90)	3{3}	5 { <i>4</i> }	7{3,4}	93° (69)
						O R	
						L	
						$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	
		\bigcirc		3{1}	5 {5}	F ₃ C 7{1,5}: R=Ph	99 (79)
3{3}	5{1}	7{3,1}	93° (95)	3{2}	5 {5}	7{2,5}: R=p-BrPh	97 (87)
		o R				\sim	
		L					
						5	
3 { <i>1</i> }	5{2}	∔Pr 7{1,2}: R=Ph	92 (83)			F ₃ C	
3{2}	5{2}	7{2,2}: R=p-BrPh	97 (81)	3{3}	5 {5}	7{3,5}	95 (91)
		\sim				o ⊂ R	
		°				F	
		\Box				CI	
		i-Pr		3{1}	5{6}	7{1,6}: R=Ph	98 (90)
3{3}	5{2}	7 {3,2}	95° (93)	3{2}	5 {6}	7{2,6}: R=p-BrPh	99 (88)
						\sim	
		Me					
3{1}	5 { <i>3</i> }	7 {1,3}: R=Ph	98 (65)			F	
3{1} 3{2}	5{3} 5{3}	$7{2,3}: R=p-BrPh$	98 (05) 99 (86)	3{3}	5 {6}	7 {3,6}	92 (98)
						o∕ II ^R	
		$\langle \rangle$				Ł	
		Me					
				3{1}	5 { <i>7</i> }	7 { <i>1</i> , <i>7</i> }: R=Ph	97 (87)
3 {3}	5{3}	7{3,3}	96 (90)	3{2}	5{7}	7{2,7}: R=p-BrPh	96 (88)
						~ ^	
						ý I)	
		MeO				-	
3{1}	5{4}	7{1,4}: R=Ph	81 (55)				
3{2}	5{4}	7{2,4}: R=p-BrPh	95 (68)	3{3}	5 {7}	7 {3,7}	99 (95)

Table 1 (Continued)

OF R				0	
E S				\checkmark	
59 7{1,8}: R=Ph	89 (71)			₩e ₂ N [·] CF ₃ CO ₂ H	
7{2,8}: R=p-BrPh	86 (67)	3{3}	5 {9}	7{3,9}	96 ^c (98)
	·			o∕ ∥ ^R	
\sim				γ	
				\square	
				NO ₂	
s-1		3 { <i>1</i> }	5 { <i>10</i> }	7{1,10}: R=Ph	91 (70)
7{3,8}	93 (79)	3{2}	5{10}	7{2,10}: R=p-BrPh	92 (64)
O, I R					
\rightarrow				0	
MeaN CEaCOaH				\square	
	08 (04)			NO ₂	
		3{3}	5 {10}	7{3,10}	93 (81)
	7{2,8}: R=p-BrPh → → → → → → → → → → → → → → → → → → →	$7\{2,8\}: R=p-BrPh \qquad 86 (67)$ $0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*a*} HPLC purity (RP-C18, MeCN/H₂O (0.1% TFA) gradient 5–100% MeCN, UV detection at 254 nm). ^{*b*} Recovered material of indicated purity. ^{*c*} UV detection at 215 nm.

Figure 3. Reagents $5\{1-10\}$.

In conclusion, we have shown that the iodine—magnesium exchange reaction is a mild method for the preparation of resin-bound aryl and alkenyl Grignard reagents. We have evaluated this by the synthesis of a library (30 compounds) of various substituted 2,5-dihydrofurans and 1,3-dihydroisobenzofurans. Investigations on the scope of this synthesis and on combining this technique with transition metal catalyzed cross-coupling reactions are currently underway.

Acknowledgment. We thank the BASF AG (Ludwigshafen), the BMBF (Förderkennzeichen 03D 0056 2), and the DFG (SFB 260, Leibniz-Program) for their financial support.

Supporting Information Available. General experimental procedures, characterization data, and ¹H NMR and ¹³C NMR spectra of selected compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- Kondo, Y.; Komine, T.; Fujinami, M.; Uchiyama, M.; Sakamoto, T. J. Comb. Chem. 1999, 1, 123.
- (2) (a) Rieke, R. D.; Xiong, H. J. Org. Chem. 1991, 56, 3109. (b) Burns, T. P.; Rieke, R. D. J. Org. Chem. 1987, 52, 3674.
- (3) For a few examples of halogen-magnesium exchange reactions, see: (a) Villieras, J. Bull. Soc. Chim. Fr. 1967, 1520. (b) Paradies, H. H.; Görbing, M. Angew. Chem. 1969, 81, 293; Angew. Chem., Int. Ed. Engl. 1969, 8, 279. (c) Smith, C. F.; Moore, G. J.; Tamborski, C. J. Organomet. Chem. 1971, 33, C21. (d) Cahiez, G.; Bernard, D.; Normant, J. F. J. Organomet. Chem. 1976, 113, 107. (e) Seyferth, D.; Lambert, R. L. J. Organomet. Chem. 1973, 54, 1234. (f) Redwane, N.; Moreau, P.; Commeyras, A. J. Fluorine Chem. 1982, 20, 699. (g) Furukawa, N.; Shibutani, T.; Fujihara, H. Tetrahedron Lett. 1987, 28, 5845. (h) Nishiyama, H.; Isaka, K.; Itoh, K.; Ohno, K.; Nagase, H.; Matsumoto, K.; Yoshiwara, H. J. Org. Chem. 1992, 57, 407. (i) Bolm, C.; Pupowicz, D. Tetrahedron Lett. 1997, 38, 7349.
- (4) Boymond, L.; Rottländer, M.; Cahiez, G.; Knochel, P. Angew. Chem. 1998, 110, 1801; Angew. Chem., Int. Ed. Engl. 1998, 37, 1701.
- (5) Wang, S.-W. J. Am. Chem. Soc. 1973, 95, 1328.
- (6) Hanessian, S.; Xie, F. Tetrahedron Lett. 1998, 39, 733.
- (7) Duboudin, J. G.; Jousseaume, B. J. Organomet. Chem. 1979, 168, 1.
- (8) Jedlicka, B.; Crabtree, R. H.; Siegbahn, P. E. M. Organometallics 1997, 16, 6021.

CC980030M